Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
1.
Epilepsia ; 65(5): 1346-1359, 2024 May.
Article in English | MEDLINE | ID: mdl-38420750

ABSTRACT

OBJECTIVE: This study was undertaken to develop a standardized grading system based on expert consensus for evaluating the level of confidence in the localization of the epileptogenic zone (EZ) as reported in published studies, to harmonize and facilitate systematic reviews in the field of epilepsy surgery. METHODS: We conducted a Delphi study involving 22 experts from 18 countries, who were asked to rate their level of confidence in the localization of the EZ for various theoretical clinical scenarios, using different scales. Information provided in these scenarios included one or several of the following data: magnetic resonance imaging (MRI) findings, invasive electroencephalography summary, and postoperative seizure outcome. RESULTS: The first explorative phase showed an overall interrater agreement of .347, pointing to large heterogeneity among experts' assessments, with only 17% of the 42 proposed scenarios associated with a substantial level of agreement. A majority showed preferences for the simpler scale and single-item scenarios. The successive Delphi voting phases resulted in a majority consensus across experts, with more than two thirds of respondents agreeing on the rating of each of the tested single-item scenarios. High or very high levels of confidence were ascribed to patients with either an Engel class I or class IA postoperative seizure outcome, a well-delineated EZ according to all available invasive EEG (iEEG) data, or a well-delineated focal epileptogenic lesion on MRI. MRI signs of hippocampal sclerosis or atrophy were associated with a moderate level of confidence, whereas a low level was ascribed to other MRI findings, a poorly delineated EZ according to iEEG data, or an Engel class II-IV postoperative seizure outcome. SIGNIFICANCE: The proposed grading system, based on an expert consensus, provides a simple framework to rate the level of confidence in the EZ reported in published studies in a structured and harmonized way, offering an opportunity to facilitate and increase the quality of systematic reviews and guidelines in the field of epilepsy surgery.


Subject(s)
Consensus , Delphi Technique , Electroencephalography , Epilepsy , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/standards , Epilepsy/surgery , Epilepsy/diagnostic imaging , Epilepsy/diagnosis
2.
Epilepsy Behav ; 151: 109615, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38176091

ABSTRACT

Hospital based EEG recordings have been the norm to assist in the diagnosis and management of patients with unclassified events and known drug resistant epilepsy. Ambulatory EEG (AEEG) is a tool that comes to serve the needs for a portable testing that can be done at home, often with higher accessibility compared to an epilepsy monitoring unit and with lower cost. The current technology provides good quality EEG tracing and can be done with video when needed. In this review we discuss how AEEG should be performed and the preferred indications in which this test may be of utmost help. The advent of ultra-long ambulatory recording may be the future for selected patients as this technology evolves.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Humans , Epilepsy/diagnosis , Epilepsy/therapy , Monitoring, Ambulatory , Video Recording , Electroencephalography
3.
Clin Neurophysiol ; 156: 251-252, 2023 12.
Article in English | MEDLINE | ID: mdl-37813765
4.
Front Neurol ; 14: 1206171, 2023.
Article in English | MEDLINE | ID: mdl-37731858

ABSTRACT

Background: Epilepsy monitoring requires simulating seizure-inducing conditions which frequently causes discomfort to epilepsy monitoring unit (EMU) patients. COVID-19 hospital restrictions added another layer of stress during hospital admissions. The purpose of this pilot study was to provide evidence that live virtual Clinically Designed Improvisatory Music (CDIM) brings relief to EMU patients for their psychological distress. Methods: Five persons with epilepsy (PWEs) in the EMU during the COVID-19 lockdown participated in the study (average age ± SD = 30.2 ± 6 years). Continuous electroencephalogram (EEG) and electrocardiogram (EKG) were obtained before, during, and after live virtual CDIM. CDIM consisted of 40 minutes of calming music played by a certified clinical music practitioner (CMP) on viola. Post-intervention surveys assessed patients' emotional state on a 1-10 Likert scale. Alpha/beta power spectral density ratio was calculated for each subject across the brain and was evaluated using one-way repeated analysis of variance, comparing 20 minutes before, during, and 20 minutes after CDIM. Post-hoc analysis was performed using paired t-test at the whole brain level and regions with peak changes. Results: Patients reported enhanced emotional state (9 ± 1.26), decrease in tension (9.6 ± 0.49), decreased restlessness (8.6 ± 0.80), increased pleasure (9.2 ± 0.98), and likelihood to recommend (10 ± 0) on a 10-point Likert scale. Based on one-way repeated analysis of variance, alpha/beta ratio increased at whole-brain analysis (F3,12 = 5.01, P = 0.018) with a peak in midline (F3,12 = 6.63, P = 0.0068 for Cz) and anterior medial frontal region (F3,12 = 6.45, P = 0.0076 for Fz) during CDIM and showed a trend to remain increased post-intervention. Conclusion: In this pilot study, we found positive effects of CDIM as reported by patients, and an increased alpha/beta ratio with meaningful electroencephalographic correlates due to the calming effects in response to CDIM. Our study provides proof of concept that live virtual CDIM offered demonstrable comfort with biologic correlations for patients admitted in the EMU during the COVID-19 pandemic.

5.
J Clin Neurophysiol ; 40(7): 567-573, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-35344517

ABSTRACT

INTRODUCTION: To define the patient characteristics, tumor characteristics, and clinical course of patients with primary brain tumors with high-frequency oscillations (HFOs) recorded on electrocorticography. Furthermore, we evaluated whether the presence of HFOs portends a greater risk of postoperative tumor-related epilepsy and whether the resection of HFO-generating tissue reduces likelihood of postoperative tumor-related epilepsy. METHODS: This was a retrospective study of 35 patients undergoing awake craniotomy for tumor resection, all of whom underwent intraoperative electrocorticography. Electrocorticography data were reviewed to assess the presence of HFOs and determine their contact locations. The data were analyzed to determine whether HFO-generating tissue was included in the resection and relationship to postoperative seizure outcome. RESULTS: Seventeen patients (48.5%) were found to have HFOs. Very few patients (4 of 35, 11.4%) had sharp waves. Patients with and without HFOs did not significantly differ in demographics, presentation, tumor characteristics, or tumor molecular genetics. A history of seizures prior to resection was not associated with the presence of HFOs ( P = 0.62), although when patients had seizures during the same hospitalization as the resection, HFOs were more likely to be present ( P = 0.045). Extent of HFO resection was not associated with the likelihood of postoperative seizure freedom. CONCLUSIONS: Approximately half (48.5%) of patients undergoing resection for a primary brain tumor had HFOs. Although HFO resection was not shown to lead to improved seizure freedom, this study was limited by a small sample size, and further investigation into HFO resection and patient outcomes in this population is warranted.


Subject(s)
Epilepsy , Neoplasms , Humans , Retrospective Studies , Epilepsy/surgery , Seizures/surgery , Electrocorticography , Electroencephalography
6.
Elife ; 112022 Dec 01.
Article in English | MEDLINE | ID: mdl-36453717

ABSTRACT

Hippocampal-dependent memory is thought to be supported by distinct connectivity states, with strong input to the hippocampus benefitting encoding and weak input benefitting retrieval. Previous research in rodents suggests that the hippocampal theta oscillation orchestrates the transition between these states, with opposite phase angles predicting minimal versus maximal input. We investigated whether this phase dependence exists in humans using network-targeted intracranial stimulation. Intracranial local field potentials were recorded from individuals with epilepsy undergoing medically necessary stereotactic electroencephalographic recording. In each subject, biphasic bipolar direct electrical stimulation was delivered to lateral temporal sites with demonstrated connectivity to hippocampus. Lateral temporal stimulation evoked ipsilateral hippocampal potentials with distinct early and late components. Using evoked component amplitude to measure functional connectivity, we assessed whether the phase of hippocampal theta predicted relatively high versus low connectivity. We observed an increase in the continuous phase-amplitude relationship selective to the early and late components of the response evoked by lateral temporal stimulation. The maximal difference in these evoked component amplitudes occurred across 180 degrees of separation in the hippocampal theta rhythm; that is, the greatest difference in component amplitude was observed when stimulation was delivered at theta peak versus trough. The pattern of theta-phase dependence observed for hippocampus was not identified for control locations. These findings demonstrate that hippocampal receptivity to input varies with theta phase, suggesting that theta phase reflects connectivity states of human hippocampal networks. These findings confirm a putative mechanism by which neural oscillations modulate human hippocampal function.

7.
J Clin Neurophysiol ; 39(6): 435-440, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35916885

ABSTRACT

SUMMARY: Ambulatory EEG (AEEG) devices offer portable, multichannel, digital EEG recording with or without video in the patient's natural environment. The technology applied for AEEG recording is like the technology for routine EEG and inpatient long-term video-EEG monitoring but designed to be compact and wearable. Computer-based AEEG technology is well-suited to digital recording, signal processing, and visual display. However, acquiring interpretable EEG outside of the hospital setting presents its own technical challenges. Published guidelines have established technical standards for performing routine EEG and inpatient video-EEG monitoring, but technical standards for AEEG are lacking. Therefore, this guideline provides minimal technical standards for the performance of AEEG which are essential to ensure the quality of studies for clinical and research practice. We expect these minimum standards to evolve over time with improved performance and advances in the technology.


Subject(s)
Electroencephalography , Signal Processing, Computer-Assisted , Humans , Monitoring, Ambulatory
8.
Epilepsia ; 63(10): 2491-2506, 2022 10.
Article in English | MEDLINE | ID: mdl-35842919

ABSTRACT

Epilepsy surgery is the treatment of choice for patients with drug-resistant seizures. A timely evaluation for surgical candidacy can be life-saving for patients who are identified as appropriate surgical candidates, and may also enhance the care of nonsurgical candidates through improvement in diagnosis, optimization of therapy, and treatment of comorbidities. Yet, referral for surgical evaluations is often delayed while palliative options are pursued, with significant adverse consequences due to increased morbidity and mortality associated with intractable epilepsy. The Surgical Therapies Commission of the International League Against Epilepsy (ILAE) sought to address these clinical gaps and clarify when to initiate a surgical evaluation. We conducted a Delphi consensus process with 61 epileptologists, epilepsy neurosurgeons, neurologists, neuropsychiatrists, and neuropsychologists with a median of 22 years in practice, from 28 countries in all six ILAE world regions. After three rounds of Delphi surveys, evaluating 51 unique scenarios, we reached the following Expert Consensus Recommendations: (1) Referral for a surgical evaluation should be offered to every patient with drug-resistant epilepsy (up to 70 years of age), as soon as drug resistance is ascertained, regardless of epilepsy duration, sex, socioeconomic status, seizure type, epilepsy type (including epileptic encephalopathies), localization, and comorbidities (including severe psychiatric comorbidity like psychogenic nonepileptic seizures [PNES] or substance abuse) if patients are cooperative with management; (2) A surgical referral should be considered for older patients with drug-resistant epilepsy who have no surgical contraindication, and for patients (adults and children) who are seizure-free on 1-2 antiseizure medications (ASMs) but have a brain lesion in noneloquent cortex; and (3) referral for surgery should not be offered to patients with active substance abuse who are noncooperative with management. We present the Delphi consensus results leading up to these Expert Consensus Recommendations and discuss the data supporting our conclusions. High level evidence will be required to permit creation of clinical practice guidelines.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Adult , Child , Consensus , Drug Resistant Epilepsy/psychology , Epilepsy/diagnosis , Epilepsy/drug therapy , Epilepsy/surgery , Humans , Referral and Consultation , Seizures/diagnosis
9.
AJR Am J Roentgenol ; 219(3): 488-500, 2022 09.
Article in English | MEDLINE | ID: mdl-35441531

ABSTRACT

Surgery is a potentially curative treatment option for patients with medically refractory focal epilepsy. Advanced neuroimaging modalities often improve surgical outcomes by contributing key information during the highly individualized surgical planning process and intraoperative localization. Hence, neuroradiologists play an integral role in the multidisciplinary management team. In this review, we initially present the conceptual background and practical framework of the presurgical evaluation process, including a description of the surgical treatment approaches used for medically refractory focal epilepsy in adults. This background is followed by an overview of the advanced modalities commonly used during the presurgical workup at level IV epilepsy centers, including diffusion imaging techniques, blood oxygenation level-dependent functional MRI (fMRI), PET, SPECT, and subtraction ictal SPECT, and by introductions to 7-T MRI and electrophysiologic techniques including electroencephalography and magnetoencephalography. We also provide illustrative case examples of multimodal neuroimaging including PET/MRI, PET/MRI-diffusion-tensor imaging (DTI), subtraction ictal SPECT, and image-guided stereotactic planning with fMRI-DTI.


Subject(s)
Epilepsies, Partial , Epilepsy , Adult , Epilepsies, Partial/diagnostic imaging , Epilepsies, Partial/surgery , Epilepsy/surgery , Humans , Magnetic Resonance Imaging/methods , Positron-Emission Tomography/methods , Radiologists , Tomography, Emission-Computed, Single-Photon/methods
10.
Neurology ; 98(19): e1893-e1901, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35292559

ABSTRACT

BACKGROUND AND OBJECTIVES: Persons with epilepsy, especially those with drug resistant epilepsy (DRE), may benefit from inpatient services such as admission to the epilepsy monitoring unit (EMU) and epilepsy surgery. The COVID-19 pandemic caused reductions in these services within the US during 2020. This article highlights changes in resources, admissions, and procedures among epilepsy centers accredited by the National Association of Epilepsy Centers (NAEC). METHODS: We compared data reported in 2019, prior to the COVID-19 pandemic, and 2020 from all 260 level 3 and level 4 NAEC accredited epilepsy centers. Data were described using frequency for categorical variables and median for continuous variables and were analyzed by center level, center population category, and geographical location. Qualitative responses from center directors to questions regarding the impact from COVID-19 were summarized utilizing thematic analysis. Responses from the NAEC center annual reports as well as a supplemental COVID-19 survey were included. RESULTS: EMU admissions declined 23% (-21,515) in 2020, with largest median reductions in level 3 centers [-55 admissions (-44%)] and adult centers [-57 admissions (-39%)]. The drop in admissions was more substantial in the East North Central, East South Central, Mid Atlantic, and New England US Census divisions. Survey respondents attributed reduced admissions to re-assigning EMU beds, restrictions on elective admissions, reduced staffing, and patient reluctance for elective admission. Treatment surgeries declined by 371 cases (5.7%), with the largest reduction occurring in VNS implantations [-486 cases (-19%)] and temporal lobectomies [-227 cases (-16%)]. All other procedure volumes increased, including a 35% (54 cases) increase in corpus callosotomies. DISCUSSION: In the US, access to care for persons with epilepsy declined during the COVID-19 pandemic in 2020. Adult patients, those relying on level 3 centers for care, and many persons in the eastern half of the US were most affected.


Subject(s)
COVID-19 , Drug Resistant Epilepsy , Epilepsy , Adult , Drug Resistant Epilepsy/surgery , Epilepsy/epidemiology , Epilepsy/surgery , Hospitalization , Humans , Pandemics , United States/epidemiology
11.
J Clin Neurophysiol ; 39(3): 175, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35255007
12.
PLoS Biol ; 20(1): e3001509, 2022 01.
Article in English | MEDLINE | ID: mdl-34986157

ABSTRACT

Studies of neuronal oscillations have contributed substantial insight into the mechanisms of visual, auditory, and somatosensory perception. However, progress in such research in the human olfactory system has lagged behind. As a result, the electrophysiological properties of the human olfactory system are poorly understood, and, in particular, whether stimulus-driven high-frequency oscillations play a role in odor processing is unknown. Here, we used direct intracranial recordings from human piriform cortex during an odor identification task to show that 3 key oscillatory rhythms are an integral part of the human olfactory cortical response to smell: Odor induces theta, beta, and gamma rhythms in human piriform cortex. We further show that these rhythms have distinct relationships with perceptual behavior. Odor-elicited gamma oscillations occur only during trials in which the odor is accurately perceived, and features of gamma oscillations predict odor identification accuracy, suggesting that they are critical for odor identity perception in humans. We also found that the amplitude of high-frequency oscillations is organized by the phase of low-frequency signals shortly following sniff onset, only when odor is present. Our findings reinforce previous work on theta oscillations, suggest that gamma oscillations in human piriform cortex are important for perception of odor identity, and constitute a robust identification of the characteristic electrophysiological response to smell in the human brain. Future work will determine whether the distinct oscillations we identified reflect distinct perceptual features of odor stimuli.


Subject(s)
Brain Waves/physiology , Electrocorticography/methods , Olfactory Perception/physiology , Piriform Cortex/physiology , Cues , Epilepsy , Humans , Odorants , Smell
13.
Clin Neuropsychol ; 36(6): 1438-1452, 2022 08.
Article in English | MEDLINE | ID: mdl-33106081

ABSTRACT

Objective: The aim of this study was to conduct item reduction of the Memory Assessment Clinics Self-Rating Scale (MAC-S) to create a briefer measure that can be used to quickly evaluate subjective memory complaints in patients with epilepsy. Method: A total of 1333 adults with focal epilepsy completed the original 49-item MAC-S. The sample was randomly split into three subsamples, and a series of analyses (i.e. exploratory factor analysis, confirmatory factor analysis, and item response theory analyses) was conducted to identify an alternative factor structure, with a reduced number of items. A panel of 5 neuropsychologists independently reviewed the final model to assess appropriateness of each individual item as well as the factor loadings and overall factor structure. Final factor titles were subsequently decided as a group. Results: Five factors were identified: Attention, Working Memory, Retrieval, Semantic Memory, and Episodic Memory. The length of the MAC-S was reduced from 49 to 30 items, with items being removed because they failed to load onto any of the factors substantially, or because of poor item discrimination or threshold levels. Conclusions: The Memory Assessment Clinics Scale for Epilepsy (MAC-E), is an updated, brief measure of subjective memory functioning that can be used to efficiently assess relevant, every-day memory abilities in patients with epilepsy within both clinical and research settings.


Subject(s)
Epilepsy , Memory, Episodic , Adult , Cognition , Epilepsy/complications , Epilepsy/psychology , Humans , Memory Disorders/diagnosis , Memory Disorders/etiology , Memory Disorders/psychology , Neuropsychological Tests , Surveys and Questionnaires
14.
J Clin Neurophysiol ; 39(6): 474-480, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-33181594

ABSTRACT

PURPOSE: Stereotactic EEG (SEEG) is being increasingly used in the intracranial evaluation of refractory epilepsy in the United States. In this study, the authors describe current practice of SEEG among National Association of Epilepsy Centers tertiary referral (level IV) centers. METHODS: Using the Survey Monkey platform, a survey was sent to all National Association of Epilepsy Centers level IV center directors. RESULTS: Of 192 centers polled, 104 directors completed the survey (54% response rate). Ninety-two percent currently perform SEEG. Of these, 55% of institutions reported that greater than 75% of their invasive electrode cases used SEEG. Stereotactic EEG was commonly used over subdural electrodes in cases of suspected mesial temporal lobe epilepsy (87%), nonlesional frontal lobe epilepsy (79%), insular epilepsy (100%), and individuals with prior epilepsy surgery (74%). Most centers (72%) used single-lead electrocardiogram monitoring concurrently with SEEG, but less than half used continuous pulse oximetry (47%) and only a few used respiratory belts (3%). Other significant intercenter technical variabilities included electrode nomenclature and choice of reference electrode. Patient care protocols varied among centers in patient-to-nurse ratio and allowed patient activity. Half of all centers had personnel who had prior experience in SEEG (50.5%); 20% of centers had adopted SEEG without any formal training. CONCLUSIONS: Stereotactic EEG has become the principal method for intracranial EEG monitoring in the majority of epilepsy surgery centers in the United States. Most report similar indications for use of SEEG, though significant variability exists in the utilization of concurrent cardiopulmonary monitoring as well as several technical and patient care practices. There is significant variability in level of background training in SEEG among practitioners. The study highlights the need for consensus statements and guidelines to benchmark SEEG practice and develop uniform standards in the United States.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Drug Resistant Epilepsy/surgery , Electrodes, Implanted , Electroencephalography/methods , Epilepsy/diagnosis , Epilepsy/surgery , Humans , Referral and Consultation , Stereotaxic Techniques , United States
15.
JAMA Neurol ; 79(1): 70-79, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34870697

ABSTRACT

Importance: Stereoelectroencephalography (SEEG) has become the criterion standard in case of inconclusive noninvasive presurgical epilepsy workup. However, up to 40% of patients are subsequently not offered surgery because the seizure-onset zone is less focal than expected or cannot be identified. Objective: To predict focality of the seizure-onset zone in SEEG, the 5-point 5-SENSE score was developed and validated. Design, Setting, and Participants: This was a monocentric cohort study for score development followed by multicenter validation with patient selection intervals between February 2002 to October 2018 and May 2002 to December 2019. The minimum follow-up period was 1 year. Patients with drug-resistant epilepsy undergoing SEEG at the Montreal Neurological Institute were analyzed to identify a focal seizure-onset zone. Selection criteria were 2 or more seizures in electroencephalography and availability of complete neuropsychological and neuroimaging data sets. For validation, patients from 9 epilepsy centers meeting these criteria were included. Analysis took place between May and July 2021. Main Outcomes and Measures: Based on SEEG, patients were grouped as focal and nonfocal seizure-onset zone. Demographic, clinical, electroencephalography, neuroimaging, and neuropsychology data were analyzed, and a multiple logistic regression model for developing a score to predict SEEG focality was created and validated in an independent sample. Results: A total of 128 patients (57 women [44.5%]; median [range] age, 31 [13-58] years) were analyzed for score development and 207 patients (97 women [46.9%]; median [range] age, 32 [16-70] years) were analyzed for validation. The score comprised the following 5 predictive variables: focal lesion on structural magnetic resonance imaging, absence of bilateral independent spikes in scalp electroencephalography, localizing neuropsychological deficit, strongly localizing semiology, and regional ictal scalp electroencephalography onset. The 5-SENSE score had an optimal mean (SD) probability cutoff for identifying a focal seizure-onset zone of 37.6 (3.5). Area under the curve, specificity, and sensitivity were 0.83, 76.3% (95% CI, 66.7-85.8), and 83.3% (95% CI, 72.30-94.1), respectively. Validation showed 76.0% (95% CI, 67.5-84.0) specificity and 52.3% (95% CI, 43.0-61.5) sensitivity. Conclusions and Relevance: High specificity in score development and validation confirms that the 5-SENSE score predicts patients where SEEG is unlikely to identify a focal seizure-onset zone. It is a simple and useful tool for assisting clinicians to reduce unnecessary invasive diagnostic burden on patients and overutilization of limited health care resources.


Subject(s)
Electroencephalography , Epilepsy/diagnosis , Seizures/diagnosis , Surveys and Questionnaires/standards , Cohort Studies , Epilepsy/surgery , Female , Humans , Male , Preoperative Care , Seizures/surgery
16.
Neurology ; 98(5): e449-e458, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34880093

ABSTRACT

BACKGROUND AND OBJECTIVES: Patients with drug-resistant epilepsy (DRE) may benefit from specialized testing and treatments to better control seizures and improve quality of life. Most evaluations and procedures for DRE in the United States are performed at epilepsy centers accredited by the National Association of Epilepsy Centers (NAEC). On an annual basis, the NAEC collects data from accredited epilepsy centers on hospital-based epilepsy monitoring unit (EMU) size and admissions, diagnostic testing, surgeries, and other services. This article highlights trends in epilepsy center services from 2012 through 2019. METHODS: We analyzed data reported in 2012, 2016, and 2019 from all level 3 and level 4 NAEC accredited epilepsy centers. Data were described using frequency for categorical variables and median for continuous variables and were analyzed by center level and center population category. EMU beds, EMU admissions, epileptologists, and aggregate procedure volumes were also described using rates per population per year. RESULTS: During the period studied, the number of NAEC accredited centers increased from 161 to 256, with the largest increases in adult- and pediatric-only centers. Growth in EMU admissions (41%), EMU beds (26%), and epileptologists (109%) per population occurred. Access to specialized testing and services broadly expanded. The largest growth in procedure volumes occurred in laser interstitial thermal therapy (LiTT) (61%), responsive neurostimulation (RNS) implantations (114%), and intracranial monitoring without resection (152%) over the study period. Corpus callosotomies and vagus nerve stimulator (VNS) implantations decreased (-12.8% and -2.4%, respectively), while growth in temporal lobectomies (5.9%), extratemporal resections (11.9%), and hemispherectomies/otomies (13.1%) lagged center growth (59%), leading to a decrease in median volumes of these procedures per center. DISCUSSION: During the study period, the availability of specialty epilepsy care in the United States improved as the NAEC implemented its accreditation program. Surgical case complexity increased while aggregate surgical volume remained stable or declined across most procedure types, with a corresponding decline in cases per center. This article describes recent data trends and current state of resources and practice across NAEC member centers and identifies several future directions for driving systematic improvements in epilepsy care.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Adult , Child , Data Analysis , Drug Resistant Epilepsy/epidemiology , Drug Resistant Epilepsy/surgery , Epilepsy/surgery , Epilepsy/therapy , Humans , Quality of Life , Seizures , United States/epidemiology
17.
Ann Neurol ; 90(6): 927-939, 2021 12.
Article in English | MEDLINE | ID: mdl-34590337

ABSTRACT

OBJECTIVE: The aim was to compare the outcomes of subdural electrode (SDE) implantations versus stereotactic electroencephalography (SEEG), the 2 predominant methods of intracranial electroencephalography (iEEG) performed in difficult-to-localize drug-resistant focal epilepsy. METHODS: The Surgical Therapies Commission of the International League Against Epilepsy created an international registry of iEEG patients implanted between 2005 and 2019 with ≥1 year of follow-up. We used propensity score matching to control exposure selection bias and generate comparable cohorts. Study endpoints were: (1) likelihood of resection after iEEG; (2) seizure freedom at last follow-up; and (3) complications (composite of postoperative infection, symptomatic intracranial hemorrhage, or permanent neurological deficit). RESULTS: Ten study sites from 7 countries and 3 continents contributed 2,012 patients, including 1,468 (73%) eligible for analysis (526 SDE and 942 SEEG), of whom 988 (67%) underwent subsequent resection. Propensity score matching improved covariate balance between exposure groups for all analyses. Propensity-matched patients who underwent SDE had higher odds of subsequent resective surgery (odds ratio [OR] = 1.4, 95% confidence interval [CI] 1.05, 1.84) and higher odds of complications (OR = 2.24, 95% CI 1.34, 3.74; unadjusted: 9.6% after SDE vs 3.3% after SEEG). Odds of seizure freedom in propensity-matched resected patients were 1.66 times higher (95% CI 1.21, 2.26) for SEEG compared with SDE (unadjusted: 55% seizure free after SEEG-guided resections vs 41% after SDE). INTERPRETATION: In comparison to SEEG, SDE evaluations are more likely to lead to brain surgery in patients with drug-resistant epilepsy but have more surgical complications and lower probability of seizure freedom. This comparative-effectiveness study provides the highest feasible evidence level to guide decisions on iEEG. ANN NEUROL 2021;90:927-939.


Subject(s)
Brain Mapping/methods , Electroencephalography/methods , Epilepsy/surgery , Neurosurgical Procedures/methods , Seizures/surgery , Stereotaxic Techniques , Adult , Electrodes, Implanted , Female , Humans , Male , Middle Aged , Treatment Outcome , Young Adult
18.
Curr Biol ; 31(20): 4499-4511.e8, 2021 10 25.
Article in English | MEDLINE | ID: mdl-34450088

ABSTRACT

Encoding and retaining novel sequences of sensory stimuli in working memory is crucial for adaptive behavior. A fundamental challenge for the central nervous system is to maintain each sequence item in an active and discriminable state, while also preserving their temporal context. Nested neural oscillations have been postulated to disambiguate the "what" and "when" of sequences, but the mechanisms by which these multiple streams of information are coordinated in the human brain remain unclear. Drawing from foundational animal studies, we recorded local field potentials from the human piriform cortex and hippocampus during a working memory task in which subjects experienced sequences of three distinct odors. Our data revealed a unique organization of odor memories across multiple timescales of the theta rhythm. During encoding, odors elicited greater gamma at distinct theta phases in both regions, time stamping their positions in the sequence, whereby the robustness of this effect was predictive of temporal order memory. During maintenance, stimulus-driven patterns of theta-coupled gamma were spontaneously reinstated in piriform cortex, recapitulating the order of the initial sequence. Replay events were time compressed across contiguous theta cycles, coinciding with periods of enhanced piriform-hippocampal theta-phase synchrony, and their prevalence forecasted subsequent recall accuracy on a trial-by-trial basis. Our data provide a novel link between endogenous replay orchestrated by the theta rhythm and short-term retention of sequential memories in the human brain.


Subject(s)
Memory, Short-Term , Piriform Cortex , Animals , Hippocampus/physiology , Humans , Memory, Short-Term/physiology , Piriform Cortex/physiology , Smell , Theta Rhythm/physiology
19.
Epileptic Disord ; 23(4): 533-536, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34266813

ABSTRACT

Restructuring of healthcare services during the COVID-19 pandemic has led to lockdown of epilepsy monitoring units (EMUs) in many hospitals. The ad-hoc taskforce of the International League Against Epilepsy (ILAE) and the International Federation of Clinical Neurophysiology (IFCN) highlights the detrimental effect of postponing video-EEG monitoring of patients with epilepsy and other paroxysmal events. The taskforce calls for action for continued functioning of EMUs during emergency situations, such as the COVID-19 pandemic. Long-term video-EEG monitoring is an essential diagnostic service. Access to video-EEG monitoring of the patients in the EMUs must be given high priority. Patients should be screened for COVID-19, before admission, according to the local regulations. Local policies for COVID-19 infection control should be adhered to during the video-EEG monitoring. In cases of differential diagnosis in which reduction of antiseizure medication is not required, home video-EEG monitoring should be considered as an alternative in selected patients.


Subject(s)
COVID-19 , Consensus , Electroencephalography , Epilepsy , Health Services Accessibility , Neurophysiological Monitoring , Outpatient Clinics, Hospital , COVID-19/diagnosis , COVID-19/prevention & control , Electroencephalography/standards , Epilepsy/diagnosis , Epilepsy/therapy , Health Services Accessibility/organization & administration , Health Services Accessibility/standards , Humans , Neurophysiological Monitoring/standards , Outpatient Clinics, Hospital/organization & administration , Outpatient Clinics, Hospital/standards , Societies, Medical/standards
20.
Clin Neurophysiol ; 132(9): 2248-2250, 2021 09.
Article in English | MEDLINE | ID: mdl-34275732

ABSTRACT

Restructuring of healthcare services during the COVID-19 pandemic has led to lockdown of Epilepsy Monitoring Units (EMUs) in many hospitals. The ad-hoc taskforce of the International League Against Epilepsy (ILAE) and the International Federation of Clinical Neurophysiology (IFCN) highlights the detrimental effect of postponing video-EEG monitoring of patients with epilepsy and other paroxysmal events. The taskforce calls for action to continue functioning of Epilepsy Monitoring Units during emergency situations, such as the COVID-19 pandemic. Long-term video-EEG monitoring is an essential diagnostic service. Access to video-EEG monitoring of the patients in the EMUs must be given high priority. Patients should be screened for COVID-19, before admission, according to the local regulations. Local policies for COVID-19 infection control should be adhered to during the video-EEG monitoring. In cases of differential diagnosis where reduction of antiseizure medication is not required, consider home video-EEG monitoring as an alternative in selected patients.


Subject(s)
COVID-19/prevention & control , Communicable Disease Control/standards , Electroencephalography/standards , Epilepsy/diagnosis , Health Services Accessibility/standards , Neurophysiology/standards , COVID-19/epidemiology , Communicable Disease Control/methods , Consensus , Electroencephalography/methods , Epilepsy/epidemiology , Epilepsy/physiopathology , Humans , Internationality , Monitoring, Physiologic/methods , Monitoring, Physiologic/standards , Neurophysiology/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...